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Abstract It is shown lhat lhe decahedral recursive model (DRM) explains at atomic level the 
structure of the decagonal (0) phase and associated approximant structures as random coincidence 
networks (RCNS), random packings of clusters satisfying DRM energy minimizing rules. RCNS are 
degenerate random tilings that become quasiperiodic when entropic disorder is maximized at 
high tempmure through phason flips requiring small atomic movements. Such phason flips 
can change lhe relative ratio and geometry of tiles, making transformations between systems 
using differenl tile sets possible. Electron microscopic obreNations for AICuCoSl. AICuFeCr, 
AlCoCu and AlPdMn systems are reproduced, including the observed Fibonacci sequenced lines 
in the former. 

lnstituto de Ffsica, UNAM. Apartado Postal 20-364.01000 Mexico, DF. Mexico 

1. Introduction 

At present, there remain two basic models attempting to describe the basic structure of 
quasicrystals: the perfect quasicrystal model (PQM) [1-3], and the random tiling model 
(RTM) [4]. The former is based on the Penrose tiling and assumes that quasicrystals 
are deterministic packings of unit cells while the latter describes them with only average 
quasiperiodicity. PQM assumes that microscopic forces, manifesting themselves as matching 
rules between tiles, force a quasiperiodic ground state. In practice, this requires frequent 
back-tracking to undo wrong choices making further growth impossible without violating 
these rules, so, at least for rapidly cooled quasicrystals, PQM does not appear plausible. The 
RTM, on the other hand, regards quasicrystals as a random packing of tiles that follows a 
:elaxed set of matching rules. In this scheme, the same energy is assumed for all possible 
tilings and the equilibrium state, not necessarily a ground state, is assumed to be one of 
maximum entropy at high temperature, 

Experimentally, it is difficult to decide which model is correct since there is apparently 
conflicting evidence supporting both views. On the one hand, it has been reported that I- 
A163.sCU1z.sFez4 [SI, D - A ~ ~ C O I ~ . + ~ I ~ . S  [61, D-A~sCO~OCUIS VI and D-AIdbCotsSiz  181 
undergo crystal-quasicrystal phase transformations at high temperature, the former being 
reversible. Conversely, other experiments on the I-AlbSCuzOFet5 system report a stable 
quasiperiodic phase at all temperatures [9]. 

In this paper we will show, using the results of the decahedral recursive model (DRM) 
[1C-141, applied to decagonal D phases [15,16], that the D phase, and all observed 
approximants, are completely describable by a random accretion of clusters following a 
simple set of packing rules. This description is basically consistent with a random tiling 
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scenario [4] where a measure of the energy has been introduced by DRM through packing 
rules. It will be shown that a quasiperiodic state is obtained when disorder is maximized 
(at high temperature) through random phason flips produced by small atomic displacements 
between adjacent 0-point sites (see below). Also, the atomic structure of several D systems 
and their associated approximants, namely AICuCoSi, AlCuFeCr 1171, AlCoCu [7] and 
AlPdMn [IS], will be explained, including the presence of Fibonacci sequenced lines in the 
former. 

Other D atomistic models have been proposed [19-231. Generically, the difference 
from the DRM lies in the fact that their structures have been formulated to describe 
specific alloys, in contrast with DRM structures derived from general principles. As  a 
consequence other models do not offer an explanation for the origin of the basic ~Iwters, 
the different periods and the general occurence of D wheels of bright spots in all D systems. 
Also, the formation mechanism and structure of associated crystalline approximants is left 
unexplained. In particular, Burkov's model was specifically designed for D-AICuCo, based 
on the observation of HEM micrographs. Although Burkov's basic cluster allows two 
different degrees of interpenetration, it can produce the same long range configurations of 
the DRM structures, which allows only one using a smaller basic cluster. The principal 
difference between Burkov and DR models lies in their basic cluster, the former having 
only two atomic layers whilst the latter has some of its atoms at slightly elevated positions 
defining layers A and B (see below). Note that atoms at elevated positions have been 
observed by scanning tunnelling microscopy [24]. 

2. The DRM model 

DRM is a general atomistic model that simulates crystalline and quasicrystalline atomic 
structures of any symmetry [13-16]. Following a small set of energy minimizing rules, 
it describes how atoms aggregate to form low-energy clusters (decahedral stage) and how 
these coalesce (recursive stage) to form macroscopic structures by minimizing the cluster- 
cluster interfacial energy. The recursive stage is based on the coincidence sites lattice model 
[U] and i t  states that there are sites in the structure (called 0-points) with the property of 
being preferred nucleation centres for atomic clusters. In the I and D cases, 0-points are 
centres of (normally distorted) icosahedra [13,15]. 

Nucleation of clusters around 0-points produces a high number of atomic coincidences 
between clusters and, thus, low-elastic-energy structures. Some 0-points are special in 
that they give rise to a larger percentage of coincidences than others, and have the same 
surroundings up to a larger volume. The atoms in this volume define a repetitive pattern 
called a basic cluster that composes the structure, so special 0-points (network nodes) are 
simply called cluster centres. DRM structures are therefore semi-random (randomness is 
limited by coincidence requirements) networks of cluster centres (or nodes, defining the 
lattice or quasilattice), decorated with interpenetrating basic cluste~s. Since every atom 
belongs to a basic cluster, the maximum density condition is satisfied and a tiling is defined 
[4] with edges linking network nodes. 

3. The D phase 

Figure l(a) shows, plane by plane, the basic cluster that yields the DRM D structure of 0.4 nm 
period, up to the nearest 0-points in each plane. The cluster, obtained from first principles 
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Figure 1. (a) Each of the four planes BI. AI. B, A of the 0.4 nm basic cluster up Lo closest 
0-points (shaded). (b) Left: maximum-coincidence (100%) configuration of basic cluslers. Note 
that every atom belangs 10 a1 leas1 one basic cluster. The shaded circles we 0-points of planes 
AI and A, above and below plane BI. Centre and right: Planes BI and A1 of a defected RCN. 
Nole non-coincident overlap of atoms inside 36 and 72' rhombi. 

by Romeu [ IO,  151, has atoms at the sites proposed by Kortan er al [24] and Becker and 
Kortan [26], based on their scanning tunnelling observations. Other clusters yielding 0.8, 
1.2 and 1.6 nm periods were also found. All clusters are subdivided in fundamental uni t s  of 
length 0.4 nm units along c, following their own packing rules, also leading to randomness 
in the periodic direction [15,16] and giving rise to all observed periodicities in D systems. 
The atoms in the 0.4 nm cluster are distributed over four planes labelled A, AI, B and BI (a 
fundamental unit) which, when stacked in the sequence . . .-BI-AI-B-A-BI-. . . along the 
IO-fold c axis, define a 0.4 nm period D column. Note that this configuration does not have 
a mirror plane as is commonly accepted. Such a mirror is also possible under DRM rules [I51 
yielding a stacking sequence . . .-BI-AI-B-AI-BI-. . .. This, however, introduces faults in 
the stacking sequence of distorted icosahedra along the c axis, increasing the elastic energy 
of the system [15]. In view of the above, and the fact that diffraction patterns of a large 
enough cluster [27] from a periodic stacking of planes . . .-BI-AI-B-A-BI-. . . have also 
a IO/mmm symmetry with extinctions in accordance with experimental observations [28], 
we believe the unmirrored sequence to be more adequate. The reader shoud note, however, 
that this is not a crucial point in what follows since the atomic sites that make planes 
A and AI different do not affect the coincidence relationships between clusters, making 
the results discussed in this paper independent of the existence of the mirror plane. The 
distance between successive planes is b = 5-'/2 in reduced units, approximately equal to 
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Figure 2. (a) 01 (right) and 02 (left) approximanu of AiCuFeCr. The tile edge lenglh is 
1.2 nm. (b) 0; (right) and 0; (lefl) approximanu of AlCoCuSi with 2 nm edge length. (c) 
Approximant of AlPdMn with different cell decoralions. On the le f t  isolated cells are shown. 
Cluster cenws may occupy either of the lwo positions inside lhe cell at the lop or, equivalently. 
along the edges of the bottom cell. (d) Monoclinic approximan1 of AiCuCo. Clurler cenlre~ are 
filled and 0-poinl sites shaded. 
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Figure 2. (Continued) 
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0.109 nm. Cluster planes A and AI have 0-points defining a decagon (DA) of circumradius 
6b around the c axis, while those of planes B and BI define a decagon (DB) of circumradius 
12bcos 18', equivalent to a cluster radius of about 1.24 nm. Note that due to periodicity, 
0-points are located along 0-lines parallel to c, and that the difference between planes 
A (B) and AI (BI) is that the they have inverted (irregular) pentagons at the same x ,  y 
positions. 

3.1. Packing rules 

A macroscopic structure can be grown by laterally shifting the basic cluster into the nearest 
available 0-points so that the number of atomic coincidences is maximized, discarding 
overlapping atoms [13]. Lateral displacements into any of the 10 DB 0-point sites (DB 
0-lines) give rise to 100% coincidence between atoms (and 0-lines) in all planes, and to 
a coherent, low-energy, cluster-cluster interface 1151. All DB 0-point sites are equally 
good cluster centres; however, having chosen one, the selection of others is no longer 
arbitrary, as we shall see below. Small adjustments of the position of some atoms are 
required ( 2 nm) to decrease elastic strain; in practice, final positions are determined 
by Lennard-Jones relaxation [ 131. Interestingly, atoms located at 0-point sites require 
no adjustment. This restriction defines a simple set of packing rules for clusters (not for 
tiles) that produce decorated networks of cluster centres with maximum atomic coincidence, 
covering the space completely. 

In order to describe the packing rules between clusters, we shall analyse the growth 
of a maximumcoincidence structure from a single cluster, with the aid of figure l(b). 
Minimum inter-cluster energy (10096 coincidence in all planes) is achieved when linkages 
between cluster centres (tile edges), make an angle of either 108" or 144" as shown in 
figure I(b) (left), other choices result in energy costly non-coincident atomic overlap and 
should be considered as structural defects. This is illustrated at the centre and right of 
figure I(b), showing a section of planes BI and AI with some defects. Note that the 72" and 
36" rhombic tiles have non-coincident atoms on planes AI and BI respectively. effectively 
ruling them out of the ground state tiling. The energy COSC of the latter is less severe since 
a relatively low-strain (with lower density) structure can still grow by removing the two 
overlapping atoms; however, better quasicrystals are obtained from AlCoCuSi alloys, which 
do not contain the 36" rhombus (see below), than from AlCoCu alloys, where it is observed. 
Choosing opposite 0-lines (180') forces the eventual appearance of the above rhombi. In a 
defect free structure, only three out of the 10 possible DB 0-lines, making 108" and 144" 
angles, are allowed. Within this limitation, 0-line selection is entirely random since there 
is no evident physical reason to prefer one coincidence maximizing 0-line configuration 
over another. We shall call the resulting network of cluster centres a random coincidence 
network (RCN). Later we shall see that 0-point sites that are not chosen as cluster centres 
may eventually become so through phason flips. 

3.2. Approximanf structures 

Following the above mechanism, it  is possible to build RCNs with small ordered zones 
or microcrystalline domains. If these domains are large enough, microcrystalline phases 
with well defined orientation relationships and coherent boundaries may be detectable, as 
demonstrated in figures 2(a)-(d). For clarity only BI planes are shown, since they permit 
the tiling to be seen more clearly and the whole 3D structure can be deduced from them 
(see below). These coincidence networks have been respectively identified as the Or, 0 2 .  
0;. 0; [I71 of Ald320FeloCrs and AI&u2OCo&i2. and the monoclinic [7,18] phases 
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of Al,oPdl,Mnl, and AIaCul5Cu20. Note that the 0 2  phase contains the 36" rhombus of 
edge length 1.24 nm. This might explain why 0 2  occurs in a much smaller proportion than 
the defect free 0, phase [171. 

3.3. Random and quasiperiodic D structures 

A maximally disordered RCN, in the sense of having no discernible micro-domains such 
as that shown in figure 3(a) (called RCNl), can also be built using the above growth rules. 
0-point sites that could have been chosen as cluster centres are shown shaded. Note that 
RCNI shows Fibonacci spaced lines defining a quasiperiodic pentagrid when viewed at a 
glancing angle. Line segments along vertical Fibonacci lines are drawn at the bottom of 
the figure as a visual aid. Weak line contrast is observed where closer than normal line 
segments at the bottom of the figure are found, making it difficult to tell where to place the 
line. This phenomenon was first observed in A ~ & I z C O & ~ ~ ~  HREM images [81. 

The complete 3D structure will be a periodic (0.4 nm) stacking (A-B-AI-BI) with 0- 
points at the centres of icosahedra compressed by about 12% along c to satisfy the periodic 
requirement. For brevity we will restrict ourselves to the 0.4 nm period case here, but the 
same reasoning applies to the 0.8, 1.2 and 1.6 nm period structures that follow the same 
coincidence maximizing conditions 1151. Figure 4 shows all planes of a 0.4 nm period 
of a D section that we shall call the basic decagon (BD), since the whole quasilattice can 
be deduced from it. Note the planes AI, above BI, have 0-points over BI pentagons and 
pentagons over BI 0-points. Planes B (and A) have 0-points at the same x ,  y positions of 
planes BI (and AI) and inverted pentagons (rotated by 36') on top of BI (and AI) pentagons, 
defining columns of distorted icosahedra. These columns run along on 0-lines and show 
up as bright spots in electron micrographs [16], giving rise to the observed wheels of bright 
spots. Since most D systems show the same D wheel contrast, it appears that they have 
a similar basic cluster structure, differing only in chemical composition, which in tum 
determines the nature of the underlying RCN. Under appropriate imaging conditions, RCNs 
with no discernible microcrystalline domains may show Fibonacci lines because there is a 
quasiperiodic coincidence network (QCN) of cluster centres associated with them. The QCN 
associated with RCNI, shown in figure 5, has been drawn over RCNL with broken lines. Note 
that the QCN edge lengths are r times larger ( 5 2 nm), and that the 36" and 72" rhombi 
do not break the 100% coincidence rule, making the approximant of figure 2(d) possible. 
There has been a report of a D phase in AlPdMn [ 181 where the 36" rhombus is absent from 
the 2 nm tiling; however, closer examination of the micrographs indicates that the tiling 
may be similar to that of figure 3(b), with some poorly defined D wheels. Note that care 
must be taken to insure that all QCN tiles are decorated identically, blindly selecting cluster 
centres from poorly detailed electron micrographs may lead to errors in the determination 
of the nature of the tiling. 

As we have seen, the physical growth rules described above can lead to a particular 
quasilattice. We have found that this quasilattice can also be generated without appealing to 
the initial growth rules in three different ways: First by deflating the pentagonal, hexagonal 
and rhombic tiles composing the QCN as indicated with finer lines in figure 5(a); second by 
overlapping shifted and rotated copies of the BD on itself so that the rhombic tiles coincide 
(see figure 5(b)) and third by the following recursion: (1) take the 0-point sites of BI planes 
from the BD (figure 5(a)) as the starting 0-point set; (2) scale the current 0-point set by 5'; 

(3) decorate the scaled set with BI decagon 0-points; (4) repeat from step (2). A portion of 
the resulting quasilattice is shown in figure 5(b). The shaded points correspond to cluster 
centres, which inflate with r2, while the full 0-point set inflates with T. One could decorate 
again the 0-points appearing in step (3) before going back to step (2) 1161 to produce the 
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., 
sites, or possible cluster c e n w  The inset at the bottom left isolates the encircled region by the 
centre to show the few atomic movement$ required to shift a cluster centre to a nearby Opoint 
site ( p h o n  Rip). lbe bottom right inset shows the scale in nm. (b) QUU drawn with thicker 
lines over RCN in (a). Note that the tile edges are scaled by T and that at h i s  inflation level, the 
36 rhombi do not break 100% coincidence. 
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Figure 4. A complete set of planes (BI-AI-B-A) of a 0.4 nm period of an unrelaxed basic 
decagon (see lext) for two growth modes, avoiding (aHd) and accepting (eHO 36O rhombi of 
edge length 1.2 nm. (a). (e) BI planes: (b). (0 B planes: (c), (9) A I  and A planes shown logether, 
(d), (h) B and BI planes shown logether to emphasize the columns of (irregular) icosahedra 
Cluster centres are filled and Opoint sites shaded. Planes A and A I  differ only in the onenlation 
of the pentagons above and below cluster cenues. 
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a b 
Figure 5. (a) Basic decagon with 0-point sites. The fine lines indicate how QCN liles (bold 
lines) must be decomed lo obtain the quasilanice by deflation. (b) Section of a quasilattice 
obtained I- the basic decagon and recursive nrle (see text). Filled circles are cluster cenlres 
and open circles 0-poinl sites. The sublartice of cluser centre inflales wilh r 2  while the complete 
quasilattice inRates with z, 

set of all 0-point sites accessible via a cluster linkage from another. Normally, this extra 
step cannot be repeated further since the 100% coincidence condition would be violated. 
The resulting quasilattice, which is the set of all possible 0-point sites, is almost identical 
to the projection of a 30 icosahedral lattice into ZD [29], and can be used to generate RCNS 
by randomly selecting from it cluster centres meeting the 100% coincidence requirement. 
If microcrystalline domains are avoided, or kept very small as in RCNI, a QCN is defined. 
Different QCNs are equivalent, in a cut and projection scheme, to different shifts of the strip 
along EL, an operation that does not change the local isomorphism. 

4. Final remarks 

Based on the DRM model, we have described the D phase and all observed approximants by 
a random accretion of clusters following a simple set of packing rules. Some words can be 
said about the mechanism that can produce the transformation from D to the approximant 
phase, and the condition under which such transformations may occur. 

It has been pointed out [PI, that the crystalquasicrystal transformation may occur 
through phasons. This point of view is supported by our results. A phason hop or Rip 
is defined as a shift of a network node (cluster centre) into an adjacent 0-point. Only a 
few small diffusive atomic displacements (see the inset in figure 3 and [30]) are required 
to produce the phason flips necessary to move a cluster centre to an adjacent 0-point site, 
provided that the atoms move cooperatively. 

Phason hops must occur between 0-points to preserve the required maximum 
coincidence ratio. Such movements should occur randomly at high temperature, increasing 
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the configurational entropy and reducing the size of crystalline domains. A reduction of 
the size of microcrystalline domains increases the Shannon-entropy of the system. The 
relevance of the Shannon-entropy in  crystal-quasicrystal phase transitions has been already 
suggested [31-34]. This entropy can be calculated for arbitrary structures in either physical 
or perpendicular space and measures the homogeneity of the system, reaching a maximum 
in the quasicrystalline state where there are no microdomains 1351. It must be noted 
that the quasicrystalline state is a possible configuration in the random tiling ensemble. 
Numerical values for D RCNs will be given elsewhere 1361. it is therefore likely that the 
microcrystalline-D transformation is produced by a randomization of the structure at high 
temperature trough phason flips like these. Note that around every cluster centre there is 
always a large number of 'unfilled' 0-points to choose for the node to hop into, so disorder 
can easely percolate through the whole lattice. 

The above flips can not only produce a rearrangement of the tiles but also change 
their geometry into any shape compatible with the DRMs cluster geometry and packing 
rules. Note that a simple rearrangement of tiles cannot explain the quasicrystal-crystal 
transformation observed in AlCoCu [7], where pentagons, hexagons and 36" rhombi, give 
way to 72' rhombi. To shed some light into the phase transformation problem, ground 
state calculations of RCNs based on simple Lennard-Jones potentials are currently under 
way. Such calculations depend on the composition of the system, and on the chemical 
content of each atomic site, which can in principle be deduced from symmetry and elastic 
energy (determined through atomic sizes) arguments. Also, diffraction calculations are being 
initiated using a general theory for interpenetrating clusters 1371. 
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